Refine your search:     
Report No.
 - 
Search Results: Records 1-3 displayed on this page of 3
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Micro-impact damage caused by mercury bubble collapse

Futakawa, Masatoshi; Naoe, Takashi*; Kogawa, Hiroyuki; Date, Hidefumi*; Ikeda, Yujiro

JSME International Journal, Series A, 48(4), p.234 - 239, 2005/10

Mercury target will be installed at the material science and life facility in J-PARC, which will promote innovative science. The mercury target will be subjected to the pressure wave caused by proton bombarding in the mercury. The pressure wave propagation induces the cavitation in mercury that imposes localized impact damage on the target vessel. The impact erosion is a critical issue to decide the lifetime of target. An electromagnetic impact testing machine, MIMTM, was developed to reproduce the localized impact erosion damage and evaluate the damage formation. Additionally, droplet impact analyses were carried out to investigate the correlation between isolate pit profile and micro-jet velocity. We confirmed that the value of depth/radius was applicable to estimate micro-jet velocity, and the velocity at 560 W in MIMTM equivalent to 1MW proton beam injection was 300 m/s approximately.

Journal Articles

Evaluation of mechanical properties and microstructure in ion-irradiated surface layer

Naoe, Takashi*; Futakawa, Masatoshi; Naito, Akira*; Kogawa, Hiroyuki; Ikeda, Yujiro; Motohashi, Yoshinobu*

JSME International Journal, Series A, 48(4), p.280 - 285, 2005/10

Target vessel materials used in spallation neutron source will be exposed to proton and neutron irradiation and mercury immersion environments. In order to evaluate the surface degradation of the vessel candidate materials due to such environment, the triple-ion beam irradiation taking the spallation reaction into account and mercury immersion tests were carried out. Mechanical properties of the gradient surface layer ware evaluated by the inverse analysis with multi-layer model that considers distribution of surface characteristic was applied to the load and depth curves measured by using the instrumented indentation machine. Transmission electron microscopic observations ware performed to evaluate the changes of microstructure in irradiated surface layer using focused ion-beam cut micro-specimen. It was confirmed that the ductility loss is enhanced by the irradiation and mercury immersion, and simulated stress and strain curves of the ion-irradiated surface layer ware adequately in good agreement with the curves of experimental equivalent neutron-irradiated material.

Journal Articles

Laser surface alloying of SUS316 stainless steel with Al-Si; Effect of substrate temperature on structure and properties of modified layer

Zherebtsov, S.*; Maekawa, Katsuhiro*; Hayashi, Terutake*; Futakawa, Masatoshi

JSME International Journal, Series A, 48(4), p.292 - 298, 2005/10

The effect of temperature on the structure and properties of the type 316 stainless steel alloyed with Al-Si has been reported in the present paper. It has been found that four different types of structure are formed in the alloyed zone depending on the temperature of the substrate. These structures differ from each other in phase composition, microhardness and relation to cracking. Hard, crack-free microstructures are formed at temperatures of about 350 and 750 $$^{circ}$$C. Maintaining the temperature of the sample at 350 $$^{circ}$$C a uniform, crack-free layer with a high hardness is produced by laser alloying with an energy density of 0.76 W/mm$$^{2}$$.

3 (Records 1-3 displayed on this page)
  • 1